User Tools

 

Share:

Years and Volumes

Success! Thank you for subscribing to receive email notifications when new articles are published in Molecular Medicine 2015. Click here to manage your subscriptions.

 
Molecular Medicine 2013

Articles from this Volume

Posted by Leah Caracappa on Apr 30, 2014 12:21 PM CDT
Posted by Leah Caracappa on Feb 4, 2014 8:14 AM CST
Posted by Leah Caracappa on Feb 4, 2014 8:11 AM CST
Nils Offen, Johannes Flemming, Hares Kamawal, Ruhel Ahmad, Wanja Wolber, Christian Geis, Holm Zaehres, Hans R Schöler, Hannelore Ehrenreich, Albrecht M Müller, and Anna-Leena Sirén

Induced cell fate changes by reprogramming of somatic cells offers an efficient strategy to generate autologous pluripotent stem (iPS) cells from any adult cell type. The potential of iPS cells to differentiate into various cell types is well established, however the efficiency to produce functional neurons from iPS cells remains modest. Here, we generated panneural progenitor cells (pNPCs) from mouse iPS cells and investigated the effect of the neurotrophic growth factor erythropoietin (EPO) on their survival, proliferation and neurodifferentiation. Under neural differentiation conditions, iPS-derived pNPCs gave rise to microtubule-associated protein-2 positive neuronlike cells (34% to 43%) and platelet-derived growth factor receptor positive oligodendrocytelike cells (21% to 25%) while less than 1% of the cells expressed the astrocytic marker glial fibrillary acidic protein. Neuronlike cells generated action potentials and developed active presynaptic terminals. The pNPCs expressed EPO receptor (EPOR) mRNA and displayed
functional EPOR signaling. In proliferating cultures, EPO (0.1–3 U/mL) slightly improved pNPC survival but reduced cell proliferation and neurosphere formation in a concentration-dependent manner. In differentiating cultures EPO facilitated neurodifferentiation as assessed by the increased number of β-III-tubulin positive neurons. Our results show that EPO inhibits iPS pNPC self-renewal and promotes neurogenesis.

View article PDF
Supplemental Data
Posted by Leah Caracappa on Jan 16, 2014 1:55 PM CST
Paloma Olvera-Caltzontzin, Guadalupe Delgado, Carmen Aceves, and Brenda Anguiano

Iodine supplementation exerts antitumor effects in several types of cancer. Iodide (I–) and iodine (I2) reduce cell proliferation and induce apoptosis in human prostate cancer cells (LNCaP and DU-145). Both chemical species decrease tumor growth in athymic mice xenografted with DU-145 cells. The aim of this study was to analyze the uptake and effects of iodine in a preclinical model of prostate cancer (transgenic adenocarcinoma of the mouse prostate [TRAMP] mice/SV40-TAG antigens), which develops cancer by 12 wks of age. 125I– and 125I2 uptake was analyzed in prostates from wild-type and TRAMP mice of 12 and 24 wks in the presence of perchlorate (inhibitor of the Na+/I– symporter [NIS]). NIS expression was quantified by quantitative polymerase chain reaction (qPCR). Mice (6 wks old) were supplemented with 0.125 mg I– plus 0.062 mg I2/mouse/day for 12 or 24 wks. The weight of the genitourinary tract (GUT), the number of acini with lesions, cell proliferation (levels of proliferating cell nuclear antigen [PCNA] by immunohistochemistry), p53 and p21 expression (by qPCR) and apoptosis (relative amount of nucleosomes by enzyme-linked immunosorbent assay) were evaluated. In both age-groups, normal and tumoral prostates take up both forms of iodine, but only I–uptake was blocked by perchlorate. Iodine supplementation prevented the overexpression of NIS in the TRAMP mice, but had no effect on the GUT weight, cell phenotype, proliferation or apoptosis. In TRAMP mice, iodine increased p53 expression but had no effect on p21 (a p53-dependent gene). Our data corroborate NIS involvement in I– uptake and support the notion that another transporter mediates I2 uptake. Iodine did not prevent cancer progression. This result could be explained by a strong inactivation
of the p53 pathway by TAG antigens.

View article PDF
Posted by Leah Caracappa on Jan 16, 2014 1:46 PM CST
Liangfang Shen, Qin Zhou, Ying Wang, Weihua Liao, Yan Chen, Zhijie Xu, Lifang Yang, and Lun-Quan Sun

Antiangiogenesis is a promising antitumor strategy that inhibits tumor vascular formation to suppress tumor growth. DNAzymes are synthetic single-strand deoxyribonucleic acid (DNA) molecules that can cleave ribonucleic acids (RNAs). Here, we conducted a comprehensive in vitro selection of active DNAzymes for their activity to cleave the vascular endothelial growth factor receptor (VEGFR-1) mRNA and screened for their biological activity in a matrigel tube-formation assay. Among the selected DNAzymes, DT18 was defined as a lead molecule that was further investigated in several model systems. In a rat corneal vascularization model, DT18 demonstrated significant and specific antiangiogenic activity, as evidenced by the reduced area and vessel number in VEGF-induced corneal angiogenesis. In a mouse melanoma model, DT18 was shown to inhibit B16 tumor growth, whereas it did not affect B16 cell proliferation. We further assessed the DT18 effect in mice with established human nasopharyngeal
carcinoma (NPC). A significant inhibition of tumor growth was observed, which accompanied downregulation of VEGFR-1 expression in NPC tumor tissues. To evaluate DT18 effect on vasculature, we performed dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) on the human NPC xenograft mice treated with DT18 and showed a reduction of the parameter of K trans (volume constant for transfer of contrast agent), which reflects the condition of tumor microvascular permeability. When examining the safety and tolerability of DT18, intravenous administration of Dz18 to healthy mice caused no substantial toxicities, as shown by parameters such as body weight, liver/kidney function, and histological and biochemical analyses. Taken together, our data suggest that the anti-VEGFR-1 DNAzyme may be used as a therapeutic agent for the treatment of cancer, such as NPC.

View article PDF

Posted by Leah Caracappa on Jan 16, 2014 1:38 PM CST
Dae Won Park, Shaoning Jiang, Jean-Marc Tadie, William S Stigler, Yong Gao, Jessy Deshane, Edward Abraham, and Jaroslaw W Zmijewski

An inability of neutrophils to eliminate invading microorganisms is frequently associated with severe infection and may contribute to the high mortality rates associated with sepsis. In the present studies, we examined whether metformin and other 5’ adenosine monophosphate-activated protein kinase (AMPK) activators affect neutrophil motility, phagocytosis and bacterial killing. We found that activation of AMPK enhanced neutrophil chemotaxis in vitro and in vivo, and also counteracted the inhibition of chemotaxis induced by exposure of neutrophils to lipopolysaccharide (LPS). In contrast, small interfering RNA (siRNA)- mediated knockdown of AMPKα1 or blockade of AMPK activation through treatment of neutrophils with the AMPK inhibitor compound C diminished neutrophil chemotaxis. In addition to their effects on chemotaxis, treatment of neutrophils with metformin or aminoimidazole carboxamide ribonucleotide (AICAR) improved phagocytosis and bacterial killing, including more efficient eradication of bacteria in a mouse model of peritonitis-induced sepsis. Immunocytochemistry showed that, in contrast to LPS, metformin or AICAR induced robust actin polymerization and distinct formation of neutrophil leading edges. Although LPS diminished AMPK phosphorylation, metformin or AICAR was able to partially decrease the effects of LPS/toll-like receptor 4 (TLR4) engagement on downstream signaling events, particularly LPS-induced IκBα degradation. The IκB kinase (IKK) inhibitor PS-1145 diminished IκBα degradation and also prevented LPS-induced inhibition of chemotaxis. These results suggest that AMPK activation with clinically approved agents, such as metformin, may facilitate bacterial eradication in sepsis and other inflammatory conditions associated with inhibition of neutrophil activation and chemotaxis. 

View article PDF
Posted by Leah Caracappa on Dec 5, 2013 11:54 AM CST
Petros D Grivas, Kathleen C Day, Andreas Karatsinides, Alyssa Paul, Nazia Shakir, Iya Owainati, Monica Liebert, Lakshmi P Kunju, Dafydd Thomas, Maha Hussain, and Mark L Day


Members of the human epidermal growth factor receptor (HER) family play a significant role in bladder cancer progression and may underlie the development of chemotherapy resistance. Dacomitinib is an irreversible tyrosine kinase inhibitor with structural specificity for the catalytic domains of epidermal growth factor receptor (EGFR), HER2 and HER4 that has exhibited vigorous efficacy against other solid tumors. We evaluated the antitumor activity of dacomitinib in human bladder cancer cell lines expressing varying levels of HER family receptors. These cell lines also were established as bladder cancer xenografts in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice to assess dacomitinib activity in vivo. Significant cytotoxic and cytostatic effects were noted in cells expressing elevated levels of the dacomitinib target receptors with apoptosis and cell cycle arrest being the predominant mechanisms of antitumor activity. Cells expressing lower levels of HER receptors were much less sensitive to dacomitinib. Interestingly, dacomitinib was more active than either trastuzumab or cetuximab in vitro, and exhibited increased growth inhibition of bladder tumor xenografts compared with lapatinib. Pharmacodynamic effects of dacomitinib included decreased E-cadherin (E-cad) expression, reduction of EGFR and extracellular signal-regulated kinase (ERK) phosphorylation and reduced mitotic count. Dacomitinib also inhibited tumor growth in a chemotherapy-resistant xenograft and, when combined with chemotherapy in a sensitive xenograft, exhibited superior antitumor effects compared with individual treatments. Evaluation in xenograft-bearing mice revealed that this combination was broadly feasible and well tolerated. In conclusion, dacomitinib exhibited pronounced activity both as a single agent and when combined with chemotherapy in human bladder cancer models. Further investigation of dacomitinib in the preclinical and clinical trial settings is being pursued. 

View article PDF
Supplementary data

Posted by Leah Caracappa on Nov 26, 2013 8:23 AM CST
Ruochan Chen, Wen Hou, Qiuhong Zhang, Rui Kang, Xue-Gong Fan, and Daolin Tang

Damage-associated molecular pattern (DAMP) molecules are essential for the initiation of innate inflammatory responses to infection and injury. The prototypic DAMP molecule, high-mobility group box 1 (HMGB1), is an abundant architectural chromosomal protein that has location-specific biological functions: within the nucleus as a DNA chaperone, within the cytosol to sustain autophagy and outside the cell as a DAMP molecule. Recent research indicates that aberrant activation of HMGB1 signaling can promote the onset of inflammatory and autoimmune diseases, raising interest in the development of therapeutic strategies to control their function. The importance of HMGB1 activation in various forms of liver disease in relation to liver damage, steatosis, inflammation, fibrosis, tumorigenesis and regeneration is discussed in this review. 

View article PDF
Posted by Leah Caracappa on Nov 22, 2013 11:14 AM CST
Xiaoling Gao, Lei Zhao, Shuhe Wang, Jie Yang, and Xi Yang

An association between inducible costimulator ligand (ICOS-L) expression and interleukin (IL)-10 production by dendritic cells (DCs) has been commonly found in infectious disease. DCs with higher ICOS-L expression and IL-10 production are reportedly more efficient in inducing regulatory T cells (Tregs). Here we use the Chlamydia muridarum (Cm) lung infection model in IL-10 knockout (KO) mice to test the relationship between IL-10 production and ICOS-L expression by DCs. We examined ICOS-L expression, the development of T-cell subsets, including Treg, Th17 and Th1 cell, in the background of IL-10 deficiency and its relationship with ICOS-L/ICOS signaling after infection. Surprisingly, we found that the IL-10 KO mice exhibited significantly higher ICOSL expression by DCs. Moreover, IL-10 KO mice showed lower Tregs but higher Th17 and Th1 responses, but only the Th17 response depended on ICOS signaling. Consistently, most of the Th17 cells were ICOS+, whereas most of the Th1 cells were ICOS– in the infected mice. Furthermore, neutralization of IL-17 in IL-10 KO mice significantly exacerbated lung infection. The data suggest that ICOS-L expression on DC may be negatively regulated by IL-10 and that ICOS-L expression on DC in the presence or absence of IL-10 costimulation may promote Treg or Th17 response, without significant impact on Th1. 

View article PDF
Posted by Leah Caracappa on Nov 18, 2013 8:27 AM CST
< Prev    1 2 3 4 5