Years and Volumes

2014 Anniversary Issue

Don't miss our 20th Anniversary Commemorative Issue.
View the flipbook now »
Success! Thank you for subscribing to receive email notifications when new articles are published in Molecular Medicine 2015. Click here to manage your subscriptions.

Molecular Medicine 2014

Articles from this Volume

Ben Lu, Kevin Kwan, Yaakov A Levine, Peder S Olofsson, Huan Yang, Jianhua Li, Sonia Joshi, Haichao Wang,4 Ulf Andersson, Sangeeta S Chavan, and Kevin J Tracey

The mammalian immune system and the nervous system coevolved under the influence of cellular and environmental stress. Cellular stress is associated with changes in immunity and activation of the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome, a key component of innate immunity. Here we show that α7 nicotinic acetylcholine receptor (α7 nAchR)-signaling inhibits inflammasome activation and prevents release of mitochondrial DNA, an NLRP3 ligand. Cholinergic receptor agonists or vagus nerve stimulation significantly inhibits inflammasome activation, whereas genetic deletion of α7 nAchR significantly enhances inflammasome activation. Acetylcholine accumulates in macrophage cytoplasm after adenosine triphosphate (ATP) stimulation in an α7 nAchR-independent manner. Acetylcholine significantly attenuated calcium or hydrogen oxide–induced mitochondrial damage and mitochondrial DNA release. Together, these findings reveal a novel neurotransmitter-mediated signaling pathway: acetylcholine translocates into the cytoplasm of immune cells during inflammation and inhibits NLRP3 inflammasome activation by preventing mitochondrial DNA release.

View PDF
Supplemental Data

Posted by Leah Caracappa on Aug 14, 2014 10:02 AM CDT
Nimmisha Govind, Ananyo Choudhury, Bridget Hodkinson, Claudia Ickinger, Jacqueline Frost, Annette Lee, Peter K Gregersen, Richard J Reynolds, S Louis Bridges Jr, Scott Hazelhurst, Michèle Ramsay, and Mohammed Tikly

The aim of this study was to identify genetic variants associated with rheumatoid arthritis (RA) risk in black South Africans. Black South African RA patients (n = 263) were compared with healthy controls (n = 374). Genotyping was performed using the Immunochip, and four-digit high-resolution human leukocyte antigen (HLA) typing was performed by DNA sequencing of exon 2. Standard quality control measures were implemented on the data. The strongest associations were in the intergenic region between the HLA-DRB1 and HLA-DQA1 loci. After conditioning on HLA-DRB1 alleles, the effect in the rest of the extended major histocompatibility (MHC) diminished. Non-HLA single nucleotide polymorphisms (SNPs) in the intergenic regions LOC389203|RBPJ, LOC100131131|IL1R1, KIAA1919|REV3L, LOC643749|TRAF3IP2, and SNPs in the intron and untranslated regions (UTR) of IRF1 and the intronic region of ICOS and KIAA1542 showed association with RA (p < 5 × 10–5). Of the SNPs previously associated with RA in Caucasians, one SNP, rs874040, locating to the intergenic region LOC389203|RBPJ was replicated in this study. None of the variants in the PTPN22 gene was significantly associated. The seropositive subgroups showed similar results to the overall cohort. The effects observed across the HLA region are most likely due to HLA-DRB1, and secondary effects in the extended MHC cannot be detected. Seven non-HLA loci are associated with RA in black South Africans. Similar to Caucasians, the intergenic region between LOC38920 and RBPJ is associated with RA in this population. The strong association of the R620W variant of the PTPN22 gene with RA in Caucasians was not replicated since this variant was monomorphic in our study, but other SNP variants of the PTPN22 gene were also not associated with RA in black South Africans, suggesting that this locus does not play a major role in RA in this population.

View PDF
Supplemental Data
Posted by Leah Caracappa on Aug 14, 2014 9:55 AM CDT
Madhu Gupta, Malvika H Solanki, Prodyot K Chatterjee, Xiangying Xue, Amanda Roman, Neeraj Desai, Burton Rochelson, and Christine N Metz

Inadequate magnesium (Mg) intake is a widespread problem, with over 50% of women of reproductive age consuming less than the Recommended Dietary Allowance (RDA). Because pregnancy increases the requirement for Mg and the beneficial effects of magnesium sulfate for preeclampsia/eclampsia and fetal neuroprotection are well described, we examined the outcomes of Mg deficiency during pregnancy. Briefly, pregnant Swiss Webster mice were fed either control or Mg-deficient diets starting on gestational day (GD) 6 through euthanasia on GD17. Mg-deficient dams had significantly reduced weight gain and higher plasma adipokines, in the absence of inflammation. Livers of Mg-deficient dams had significantly higher saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) and lower polyunsaturated fatty acids (PUFAs), including docosahexaenoic acid (DHA) (P <0.0001) and arachidonic acid (AA) (P < 0.0001). Mechanistically, Mg deficiency was accompanied by enhanced desaturase and elongase mRNA expression in maternal livers along with higher circulating insulin and glucose concentrations (P < 0.05) and increased mRNA expression of Srebf1 and Chrebp, regulators of fatty acid synthesis (P < 0.05). Fetal pups exposed to Mg deficiency were growth-restricted and exhibited reduced survival. Mg-deficient fetal livers showed lower MUFAs and higher PUFAs, with lower desaturase and elongase mRNA expression than controls. In addition, DHA concentrations were lower in Mg-deficient fetal brains (P < 0.05). These results indicate that Mg deficiency during pregnancy influences both maternal and fetal fatty acid metabolism, fetal growth and fetal survival, and support better understanding maternal Mg status before and during pregnancy.

View PDF
Supplemental Data
Posted by Leah Caracappa on Aug 14, 2014 9:43 AM CDT
Anthony Cerami, PhD, and Kevin J Tracey, MD

This fall marks the 20-year anniversary of Kenneth S Warren and Anthony Cerami launching Molecular Medicine. Their mission was to offer a new venue for the publication of scientific papers that would address the important medical problems of the world. For the past 8 years, Dr. Tracey and I have functioned as co–Editors in Chief of Molecular Medicine. It has been our pleasure to serve as editors in the exciting field of molecular medicine. Going forward, we will continue to provide guidance to Molecular Medicine as Editors Emeriti. Dr. Tracey...

View PDF
Posted by Leah Caracappa on Aug 8, 2014 11:48 AM CDT
Betty Diamond, MD

I am pleased and honored to accept the position of Editor in Chief of Molecular Medicine, published by The Feinstein Institute for Medical Research. Molecular Medicine reflects The Feinstein Institute for Medical Research’s continuous commitment to provide an interface between basic science and transforming clinical practice. I have worked at this interface for many years, guiding student and postdoctoral fellows interested in translating biomedical research into improved clinical practice. I am very excited...

View PDF
Posted by Leah Caracappa on Aug 8, 2014 11:45 AM CDT
Domokos Gerö, Petra Szoleczky, Athanasia Chatzianastasiou, Andreas Papapetropoulos, and Csaba Szabo

Poly(ADP-ribose) polymerase-1 (PARP-1) activation is a hallmark of oxidative stress–induced cellular injury that can lead to energetic failure and necrotic cell death via depleting the cellular nicotinamide adenine dinucleotide (NAD+) and ATP pools. Pharmacological PARP-1 inhibition or genetic PARP-1 deficiency exert protective effects in multiple models of cardiomyocyte injury. However, the connection between nuclear PARP-1 activation and depletion of the cytoplasmic and mitochondrial energy pools is poorly understood. By using cultured rat cardiomyocytes, here we report that ring finger protein 146 (RNF146), a cytoplasmic E3-ubiquitin ligase, acts as a direct interactor of PARP-1. Overexpression of RNF146 exerts protection against oxidant-induced cell death, whereas PARP-1–mediated cellular injury is augmented after RNF146 silencing. RNF146 translocates to the nucleus upon PARP-1 activation, triggering the exit of PARP-1 from the nucleus, followed by rapid degradation of both proteins. PARP-1 and RNF146 degradation occurs in the early phase of myocardial ischemia-reperfusion injury; it precedes the induction of heat shock protein expression. Taken together, PARP-1 release from the nucleus and its rapid degradation represent newly identified steps of the necrotic cell death program induced by oxidative stress. These steps are controlled by the ubiquitin-proteasome pathway protein RNF146. The current results shed new light on the mechanism of necrotic cell death. RNF146 may represent a distinct target for experimental therapeutic intervention of oxidant-mediated cardiac injury.

View PDF
Posted by Sheila Platt on Jul 31, 2014 9:42 AM CDT
Nathan Y Weltman, Kaie Ojamaa, Evelyn H Schlenker, Yue-Feng Chen, Riccardo Zucchi, Alessandro Saba, Daria Colligiani, Viswanathan Rajagopalan, Christine J Pol, and A Martin Gerdes

Thyroid dysfunction is common in individuals with diabetes mellitus (DM) and may contribute to the associated cardiac dysfunction. However, little is known about the extent and pathophysiological consequences of low thyroid conditions on the heart in DM. DM was induced in adult female Sprague Dawley (SD) rats by injection of nicotinamide (N; 200 mg/kg) followed by streptozotocin (STZ; 65 mg/kg). One month after STZ/N, rats were randomized to the following groups (N = 10/group): STZ/N or STZ/N + 0.03 μg/mL T3; age-matched vehicle-treated rats served as nondiabetic controls (C). After 2 months of T3 treatment (3 months post-DM induction), left ventricular (LV) function was assessed by echocardiography and LV pressure measurements. Despite normal serum thyroid hormone (TH) levels, STZ/N treatment resulted in reductions in myocardial tissue content of THs (T3 and T4: 39% and 17% reduction versus C, respectively). Tissue hypothyroidism in the DM hearts was associated with increased DIO3 deiodinase (which converts THs to inactive metabolites) altered TH transporter expression, reexpression of the fetal gene phenotype, reduced arteriolar resistance vessel density, and diminished cardiac function. Low-dose T3 replacement largely restored cardiac tissue TH levels (T3 and T4: 43% and 10% increase versus STZ/N, respectively), improved cardiac function, reversed fetal gene expression and preserved the arteriolar resistance vessel network without causing overt symptoms of hyperthyroidism. We conclude that cardiac dysfunction in chronic DM may be associated with tissue hypothyroidism despite normal serum TH levels. Low-dose T3 replacement
appears to be a safe and effective adjunct therapy to attenuate and/or reverse cardiac remodeling and dysfunction induced by experimental DM.

View PDF
Supplemental Data
Posted by Sheila Platt on Jul 31, 2014 8:55 AM CDT
Amit K Mittal, Nagendra K Chaturvedi, Karan J Rai, Christine E Gilling-Cutucache, Tara M Nordgren,
Margaret Moragues, Runqing Lu, Rene Opavsky, Greg R Bociek, Dennis D Weisenburger, Javeed Iqbal,
and Shantaram S Joshi

Chronic lymphocytic leukemia (CLL) cells survive longer in vivo than in vitro, suggesting that the tissue microenvironment provides prosurvival signals to tumor cells. Primary and secondary lymphoid tissues are involved in the pathogenesis of CLL, and the role of these tissue microenvironments has not been explored completely. To elucidate host–tumor interactions, we performed gene expression profiling (GEP) of purified CLL cells from eripheral blood (PB; n = 20), bone marrow (BM; n = 18), and lymph node (LN; n = 15) and validated key pathway genes by real-time polymerase chain reaction, immunohistochemistry and/or TCL1 transgenic mice. Gene signatures representing several pathways critical for survival and activation of B cells were altered in CLL cells from different tissue compartments. Molecules associated with the B-cell receptor (BCR), B cell–activating factor/a proliferationinducing ligand (BAFF/APRIL), nuclear factor (NF)-κB pathway and immune suppression signature were enriched in LN-CLL, suggesting LNs as the primary site for tumor growth. Immune suppression genes may help LN-CLL cells to modulate antigenpresenting and T-cell behavior to suppress antitumor activity. PB CLL cells overexpressed chemokine receptors, and their cognate ligands were enriched in LN and BM, suggesting that a chemokine gradient instructs B cells to migrate toward LN or BM. Of several chemokine ligands, the expression of CCL3 was associated with poor prognostic factors. The BM gene signature was enriched with antiapoptotic, cytoskeleton and adhesion molecules. Interestingly, PB cells from lymphadenopathy patients shared GEP with LN cells. In Eμ-TCL1 transgenic mice (the mouse model of the disease), a high percentage of leukemic cells from the lymphoid compartment express key BCR and NF-κB molecules. Together, our findings demonstrate that the lymphoid microenvironment promotes survival, proliferation and progression of CLL cells via chronic activation of BCR, BAFF/APRIL and NF-κB activation while suppressing the immune response.

View PDF
Supplemental Data
Posted by Sheila Platt on Jul 15, 2014 9:57 AM CDT
Chunhua Jin, Joseph C Cleveland, Lihua Ao, Jilin Li, Qingchun Zeng, David A Fullerton, and Xianzhong Meng

The myocardial inflammatory response contributes to cardiac functional injury associated with heart surgery obligating global ischemia/reperfusion (I/R). Toll-like receptors (TLRs) play an important role in the mechanism underlying myocardial I/R injury. The aim of this study was to examine the release of small constitutive heat shock proteins (HSPs) from human and mouse myocardium after global ischemia and examine the role of extracellular small HSP in myocardial injury. HSP27 release was assessed by enzymelinked immunosorbent assay. Anti-HSP27 was applied to evaluate the role of extracellular HSP27 in the postischemic inflammatory response and functional injury in mouse hearts. Isolated hearts and cultured coronary vascular endothelial cells were exposed to recombinant HSP27 to determine its effect on proinflammatory signaling and production of proinflammatory mediators. HSP27 levels were markedly elevated in coronary sinus blood of patients and in coronary effluent of mouse hearts after global ischemia. Neutralizing extracellular HSP27 suppressed myocardial nuclear factor (NF)-κB activation and interleukin (IL)-6 production and improved cardiac function in mouse hearts. Perfusion of HSP27 to mouse hearts induced NF-κB activation and IL-6 production and depressed contractility. Further, recombinant HSP27 induced NF-κB phosphorylation and upregulated monocyte chemoattractant protein (MCP)-1 and intercellular adhesion molecule (ICAM)-1 production in both human and mouse coronary vascular endothelial cells. TLR2 knockout (KO) or TLR4 mutation abolished NF-κB phosphorylation and reduced MCP-1 and ICAM-1 production induced by extracellular HSP27 in endothelial cells. In conclusion, these results show that the myocardium releases HSP27 after global ischemia and that extracellular HSP27 is proinflammatory and contributes to the inflammatory mechanism of myocardial functional injury. Both TLR2 and TLR4 are involved in mediating the proinflammatory effect of extracellular HSP27.

View PDF
Posted by Sheila Platt on Jul 15, 2014 9:01 AM CDT
Hogyoung Kim, Zakaria Y Abd Elmageed, Christian Davis, Ali H El-Bahrawy, Amarjit S Naura, Ibrahim Ekaidi, Asim B Abdel-Mageed, and A Hamid Boulares

PDZ domain containing 1 (PDZK1) is a scaffold protein that plays a role in the fate of several proteins. Estrogen can induce PDZK1 gene expression; however, our recent report showed that PDZK1 expression in the breast cancer cell line MCF-7 is indirect and involves insulin-like growth factor (IGF)-1 receptor function. Such a relationship was established in cell culture systems and human breast cancer tissues. Here we show that overexpression of PDZK1 promoted an increase in cyclin D1 and enhanced anchorageindependent growth of MCF-7 cells in the absence of 17β-estradiol, suggesting that PDZK1 harbors oncogenic activity. Indeed, PDKZ1 overexpression enhanced epidermal growth factor receptor (EGFR)-stimulated MEK/ERK1/2 signaling and IGF-induced Akt phosphorylation. PDZK1 appeared to play this role, in part, by stabilizing the integrity of the growth promoting factors Akt, human
epidermal growth factor receptor 2 (Her2/Neu) and EGFR. Increased Akt levels occurred via a decrease in the ubiquitination of the kinase. PDZK1 overexpression was associated with resistance to paclitaxel/5-fluorouracil/etoposide only at low concentrations. Although the increased stability of Akt was sensitive to heat shock protein 90 (HSP90) inhibition, increased levels of the cochaperone cell division cycle 37 (Cdc37), as well as its ability to bind PDZK1, appear to play a larger role in kinase stability. Using human tissue microarrays, we show strong positive correlation between PDZK1, Akt and Cdc37 protein levels, and all correlated with human breast malignancy. There were no positive correlations between PDZK1 and Cdc37 at the mRNA levels, confirming our in vitro studies. These results demonstrate a relationship between PDZK1, Akt and Cdc37, and potentially Her2/Neu and EGFR, in breast cancer, representing a new axis that can be targeted therapeutically to reduce the burden of human breast cancer.

View PDF
Supplemental Data
Posted by Sheila Platt on Jul 14, 2014 3:22 PM CDT
   1 2 3 4 5 6 7 8 9