Share:

Years and Volumes

2015 Anniversary Issue


Don't miss our 20th Anniversary Commemorative Issue.
View the flipbook now »
Success! Thank you for subscribing to receive email notifications when new articles are published in Molecular Medicine 2015. Click here to manage your subscriptions.

 
Molecular Medicine 2015

Articles from this Volume

Gabriella Leung, Björn Petri, José Luis Reyes, Arthur Wang, Jordan Iannuzzi, and Derek M McKay

The adoptive transfer of alternatively activated macrophages (AAMs) has proven to attenuate inflammation in multiple mouse models of colitis; however, the effect of cryopreservation on AAMs, the ability of previously frozen AAMs to block dinitrobenzene sulfonic acid (DNBS) (Th1) and oxazolone (Th2) colitis and their migration postinjection remains unknown. Here we have found that while cryopreservation reduced mRNA expression of canonical markers of interleukin (IL)-4–treated macrophages [M(IL-4)], this step did not translate to reduced protein or activity, and the cells retained their capacity to drive the suppression of colitis. The anticolitic effect of M(IL-4) adoptive transfer required neither T or B cell nor peritoneal macrophages in the recipient. After injection into the peritoneal cavity, M(IL-4)s migrated to the spleen, mesenteric lymph nodes and colon of DNBS-treated mice. The chemokines CCL2, CCL4 and CX3CL1 were expressed in the colon during the course of DNBS-induced colitis. The expression of integrin β7 on transferred M(IL-4)s was required for their anticolitic effect, whereas the presence of the chemokine receptors CCR2 and CX3CR1 were dispensable in this model. Collectively, the data show that M(IL-4)s can be cryopreserved M(IL-4)s and subsequently used to suppress colitis in an integrin β7-dependent manner, and we suggest that these proof-of-concept studies may lead to new cellular therapies for human inflammatory bowel disease.

View PDF
Supplemental Data
Posted by Sheila Platt on Mar 10, 2016 3:33 PM CST
Shuang Hu, Yuxing Zhang, Meng Zhang, Yanchao Guo, Ping Yang, Shu Zhang, Sakine Simsekyilmaz, Jun-Fa Xu, Jinxiu Li, Xudong Xiang, Qilin Yu, and Cong-Yi Wang

Aloperine is a quinolizidine alkaloid extracted from the leaves of Sophora plants. It has been recognized with the potential to treat inflammatory and allergic diseases as well as tumors. In this report, we demonstrate that pretreatment with aloperine provided protection for mice against ischemia-reperfusion (IR)-induced acute renal injury as manifested by the attenuated inflammatory infiltration, reduced tubular apoptosis, and well-preserved renal function. Mechanistic studies revealed that aloperine selectively repressed IL-1β and IFN-γ expression by regulating PI3K/Akt/mTOR signaling and NF-κB transcriptional activity. However, aloperine did not show a perceptible impact on IL-6 and TGF-β expression and the related Jak2/Stat3 signaling. It was also noted that aloperine regulates AP-1 activity, through which it not only enhances SOD expression to increase reactive oxygen species (ROS) detoxification but also promotes the expression of antiapoptotic Bcl-2, thereby preventing tubular cells from IR-induced apoptosis. Collectively, our data suggest that administration of aloperine prior to IR insults, such as renal transplantation, could be a viable approach to prevent IR-induced injuries.

View PDF
Supplemental Data
Posted by Sheila Platt on Mar 10, 2016 2:54 PM CST
Giuseppina Nicolini, Francesca Forini, Claudia Kusmic, Letizia Pitto, Laura Mariani, and Giorgio Iervasi

Activation of transforming growth factor (TGF)-β1 signaling in the ischemia/reperfusion (I/R) injured myocardium leads to dysregulation of miR-29-30-133, favoring the profibrotic process that leads to adverse cardiac remodeling (CR). We have previously shown that timely correction of the postischemic low-T3 syndrome (Low-T3S) exerts antifibrotic effects, but the underlying molecular players are still unknown. Here we hypothesize that a prompt, short-term infusion of T3 in a rat model of post I/R Low-T3S could hamper the early activation of the TGFβ1-dependent profibrotic cascade to confer long-lasting cardioprotection against adverse CR. Twenty-four hours after I/R, rats that developed the Low-T3S were randomly assigned to receive a 48-h infusion of 6 μg/kg/d T3 (I/R-L T3) or saline (I/R-L) and sacrificed at 3 or 14 d post-I/R. Three days post-I/R, Low-T3S correction favored
functional cardiac recovery. This effect was paralleled by a drop in TGFβ1 and increased miR-133a, miR-30c and miR-29c in the infarcted myocardium. Consistently, connective transforming growth factor (CTGF) and matrix metalloproteinase-2 (MMP-2), validated targets of the above miRNAs, were significantly reduced. Fourteen days post-I/R, the I/R-L T3 rats presented a significant reduction of scar size with a better preservation of cardiac performance and LV chamber geometry. At this time, TGFβ1 and miR-29c levels were in the normal range in both groups, whereas miR-30c-133a, MMP-2 and CTGF remained significantly altered in the I/R group. In conclusion, the antifibrotic effect exerted by T3 in the early phase of postischemic wound healing triggers a persistent cardioprotective response that hampers the progression of heart dysfunction and adverse CR.

View PDF
Supplemental Data
Posted by Sheila Platt on Mar 8, 2016 1:20 PM CST
Cheng-Hsien Chen, Tso-Hsiao Chen, Mei-Yi Wu, Jia-Rung Chen, Li-Yu Hong, Cai-Mei Zheng, I-Jen Chiu, Yuh-Feng Lin, and Yung-Ho Hsu

Peroxisome proliferator–activated receptor (PPAR)-α is a transcription factor that has been reported to inhibit gentamicin-induced apoptosis in renal tubular cells. However, the antiapoptotic mechanism of PPARα is still unknown. In this study, we found that PPARα overexpression induced Na /H exchanger-1 (NHE1) expression in the rat renal tubular cells NRK-52E. Beraprost, a PPARα ligand, also increased NHE1 expression in the renal tubules in normal mice, but not in PPARα knockout mice. Chromatin immunoprecipitation assays revealed that two PPARα binding elements were located in the rat NHE1 promoter region. Na /H exchanger activity also increased in the PPARα-overexpressed cells. Flow cytometry showed that the PPARα-overexpressed cells were resistant to apoptosis-induced shrinkage. Cariporide, a selective NHE1 inhibitor, inhibited the antiapoptotic effect of PPARα in the gentamicin-treated cells. The interaction between NHE1 and ezrin/radixin/moesin (ERM) and between ERM and phosphatidylinositol 4,5-bisphosphate in the PPARα-overexpressed cells was more than in the control cells. ERM short interfering RNA (siRNA) transfection inhibited the PPARα-induced antiapoptotic effect. PPARα overexpression also increased the phosphoinositide 3-kinase (PI3K) expression, which is dependent on NHE1 activity. Increased PI3K further increased the phosphorylation of the prosurvival kinase Akt in the PPARα-overexpressed cells. Wortmannin, a PI3K inhibitor, inhibited PPARα-induced Akt activity and the antiapoptotic effect. We conclude that PPARα induces NHE1 expression and then recruits ERM to promote PI3K/Akt-mediated cell survival in renal tubular cells. The application of PPARα activation reduces the nephrotoxicity of gentamicin and may expand the clinical use of gentamicin.

View PDF
Posted by Sheila Platt on Mar 8, 2016 1:07 PM CST
José Luis Cano-Peñalver, Mercedes Griera, Andrea García-Jerez, Marco Hatem-Vaquero, María Piedad Ruiz-Torres, Diego Rodríguez-Puyol, Sergio de Frutos, and Manuel Rodríguez-Puyol

Soluble guanylyl cyclase (sGC) is activated by nitric oxide (NO) and produces cGMP, which activates cGMP-dependent protein kinases (PKG) and is hydrolyzed by specific phosphodiesterases (PDE). The vasodilatory and cytoprotective capacity of cGMP-axis activation results in a therapeutic strategy for several pathologies. Integrin-linked kinase (ILK), a major scaffold protein between the extracellular matrix and intracellular signaling pathways, may modulate the expression and functionality of the cGMP-axis–related proteins. We introduce ILK as a novel modulator in renal homeostasis as well as a potential target for cisplatin (CIS)-induced acute kidney injury (AKI) improvement. We used an adult mice model of depletion of ILK (cKD-ILK), which showed basal increase of sGC and PKG expressions and activities in renal cortex when compared with wildtype (WT) littermates. Twenty-four h activation of sGC activation with NO enhanced the filtration rate in cKD-ILK. During AKI, cKD-ILK maintained the cGMP-axis upregulation with consequent filtration rates enhancement and ameliorated CIS-dependent tubular epithelial-to-mesenchymal transition and inflammation and markers. To emphasize the role of cGMP-axis upregulation due to ILK depletion, we modulated the cGMP axis under AKI in vivo and in renal cultured cells. A suboptimal dose of the PDE inhibitor ZAP enhanced the beneficial effects of the ILK depletion in AKI mice. On the other hand, CIS increased contractility-related events in cultured glomerular mesangial cells and necrosis rates in cultured tubular cells; ILK depletion protected the cells while sGC blockade with ODQ fully recovered the damage.

View PDF
Posted by Leah Caracappa on Mar 2, 2016 12:56 PM CST
YanGuo Kong, Gustavo A Barisone, Ranjit S Sidhu, Robert T O’Donnell, and Joseph M Tuscano

Checkpoint kinase inhibition has been studied as a way of enhancing the effectiveness of DNA-damaging agents. More recently, histone deacetylase inhibitors have shown efficacy in several cancers, including non-Hodgkin lymphoma. To evaluate the effectiveness of this combination for the treatment of lymphoma, we examined the combination of AR42, a histone deacetylase inhibitor, and checkpoint kinase 2 (CHEK2) inhibitor II in vitro and in vivo. The combination resulted in up to 10-fold increase in potency in five Burkitt lymphoma cell lines when compared with either drug alone. Both drugs inhibited tumor progression in xenograft models, but the combination was more effective than either agent alone, resulting in regression of established tumors. No toxicity was observed. These results suggest that the combination of histone deacetylase inhibition and checkpoint kinase inhibition represent an effective and nontoxic treatment option that should be further explored in preclinical and clinical studies.

View PDF

 
Posted by Sheila Platt on Feb 25, 2016 1:15 PM CST
Pim B Olthof, Megan J Reiniers, Marcel C Dirkes, Thomas M van Gulik, Michal Heger, and Rowan F van Golen

Hepatic ischemia/reperfusion (I/R) injury is a side effect of major liver surgery that often cannot be avoided. Prolonged periods of ischemia put a metabolic strain on hepatocytes and limit the tolerable ischemia and preservation times during liver resection and transplantation, respectively. In both surgical settings, temporarily lowering the metabolic demand of the organ by reducing organ temperature effectively counteracts the negative consequences of an ischemic insult. Despite its routine use, the application of liver cooling is predicated on an incomplete understanding of the underlying protective mechanisms, which has limited a uniform and widespread implementation of liver-cooling techniques. This review therefore addresses how hypothermia-induced hypometabolism modulates hepatocyte metabolism during ischemia and thereby reduces hepatic I/R injury. The mechanisms underlying hypothermia-mediated reduction in energy expenditure during ischemia and the attenuation of mitochondrial production of reactive oxygen species during early reperfusion are described. It is further addressed how hypothermia suppresses the sterile hepatic I/R immune response and preserves the metabolic functionality of hepatocytes. Lastly, a summary of the clinical status quo of the use of liver cooling for liver resection and transplantation is provided.

View PDF

 
Posted by Sheila Platt on Feb 25, 2016 1:05 PM CST
Sushant Bhattacharya, Rangoli Aggarwal, Vijay Pal Singh, Srinivasan Ramachandran, and Malabika Datta

Delayed wound healing is a major complication associated with diabetes and is a result of a complex interplay among diverse deregulated cellular parameters. Although several genes and pathways have been identified to be mediating impaired wound closure, the role of microRNAs (miRNAs) in these events is not very well understood. Here, we identify an altered miRNA signature in the prolonged inflammatory phase in a wound during diabetes, with increased infiltration of inflammatory cells in the basal layer of the epidermis. Nineteen miRNAs were downregulated in diabetic rat wounds (as compared with normal rat wound, d 7 postwounding) together with inhibited levels of the central miRNA biosynthesis enzyme, Dicer, suggesting that in wounds of diabetic rats, the decreased levels of Dicer are presumably responsible for miRNA downregulation. Compared with unwounded skin, Dicer levels were significantly upregulated 12 d postwounding in normal rats, and this result was notably absent in diabetic rats that showed impaired wound closure. In a wound-healing specific quantitative reverse transcriptase–polymerase chain reaction (RT-PCR) array, 10 genes were significantly altered in the diabetic rat wound and included growth factors and collagens. Network analyses demonstrated significant interactions and correlations between the miRNA predicted targets (regulators) and the 10 wound-healing specific genes, suggesting altered miRNAs might fine-tune the levels of these genes that determine wound closure. Dicer inhibition prevented HaCaT cell migration and affected wound closure. Altered levels of Dicer and miRNAs are critical during delayed wound closure and offer promising targets to address the issue of impaired wound healing.

View PDF
Posted by Sheila Platt on Feb 25, 2016 12:50 PM CST
Wan I Wan-Ibrahim, Vivek A Singh, Onn H Hashim, and Puteri S Abdul-Rahman

Diagnosis of bone tumor currently relies on imaging and biopsy, and hence, the need to find less invasive ways for its accurate detection. More recently, numerous promising deoxyribonucleic acid (DNA) and protein biomarkers with significant prognostic, diagnostic and/or predictive abilities for various types of bone tumors have been identified from genomics and proteomics studies. This article reviewed the putative biomarkers for the more common types of bone tumors (that is, osteosarcoma, Ewing sarcoma, chondrosarcoma [malignant] and giant cell tumor [benign]) that were unveiled from the studies. The benefits and drawbacks of these biomarkers, as well as the technology platforms involved in the research, were also discussed. Challenges faced in the biomarker discovery studies and the problems in their translation from the bench to the clinical settings were also addressed.

View PDF
Posted by Sheila Platt on Feb 25, 2016 12:38 PM CST
Marc Catalán-García, Glòria Garrabou, Constanza Morén, Mariona Guitart-Mampel, Ingrid Gonzalez-Casacuberta, Adriana Hernando, Jose Miquel Gallego-Escuredo, Dèlia Yubero, Francesc Villarroya, Raquel Montero, Albert Selva O-Callaghan, Francesc Cardellach, and Josep Maria Grau

Sporadic inclusion body myositis (sIBM) is a rare disease that is difficult to diagnose. Muscle biopsy provides three prominent pathological findings: inflammation, mitochondrial abnormalities and fibber degeneration, represented by the accumulation of protein depots constituted by β-amyloid peptide, among others. We aim to perform a screening in plasma of circulating molecules related to the putative etiopathogenesis of sIBM to determine potential surrogate biomarkers for diagnosis. Plasma from 21 sIBM patients and 20 age- and gender-paired healthy controls were collected and stored at –80°C. An additional population of patients with non-sIBM inflammatory myopathies was also included (nine patients with dermatomyositis and five with polymyositis). Circulating levels of inflammatory cytokines (interleukin [IL]-6 and tumor necrosis factor [TNF]-α), mitochondrial-related molecules (free plasmatic mitochondrial DNA [mtDNA], fibroblast growth factor-21 [FGF-21] and coenzyme-Q10 [CoQ]) and amyloidogenic-related molecules (beta-secretase-1 [BACE-1], presenilin-1 [PS-1], and soluble Aβ precursor protein [sAPPβ]) were assessed with magnetic bead–based assays, real-time polymerase chain reaction, enzyme-linked immunosorbent assay (ELISA) and high-pressure liquid chromatography (HPLC). Despite remarkable trends toward altered plasmatic expression of inflammatory and mitochondrial molecules (increased IL-6, TNF-α, circulating mtDNA and FGF-21 levels and decreased content in CoQ), only amyloidogenic degenerative markers including BACE-1, PS-1 and sAPPβ levels were significantly increased in plasma from sIBM patients compared with controls and other patients with non-sIBM inflammatory
myopathies (p < 0.05). Inflammatory, mitochondrial and amyloidogenic degeneration markers are altered in plasma of sIBM patients confirming their etiopathological implication in the disease. Sensitivity and specificity analysis show that BACE-1, PS-1 and sAPPβ represent a good predictive noninvasive tool for the diagnosis of sIBM, especially in distinguishing this disease from polymyositis.

View PDF
Posted by Sheila Platt on Feb 22, 2016 1:45 PM CST
   1 2 3 4 5 6 7 8 9 ... 11