Share:

Years and Volumes

2015 Anniversary Issue


Don't miss our 20th Anniversary Commemorative Issue.
View the flipbook now »
Success! Thank you for subscribing to receive email notifications when new articles are published in Molecular Medicine 2015. Click here to manage your subscriptions.

 
Molecular Medicine 2015

Articles from this Volume

Posted by Sheila Platt on Feb 16, 2016 3:23 PM CST
Christoph Ott, Henrik Martens, Imam Hassouna, Bárbara Oliveira, Christian Erck, Maria-Patapia Zafeiriou, Ulla-Kaisa Peteri, Dörte Hesse, Simone Gerhart, Bekir Altas, Tekla Kolbow, Herbert Stadler, Hiroshi Kawabe, Wolfram-Hubertus Zimmermann, Klaus-Armin Nave, Walter Schulz-Schaeffer, Olaf Jahn, and Hannelore Ehrenreich

Erythropoietin (EPO) exerts potent neuroprotective, neuroregenerative and procognitive functions. However, unequivocal demonstration of erythropoietin receptor (EPOR) expression in brain cells has remained difficult since previously available anti-EPOR antibodies (EPOR-AB) were unspecific. We report here a new, highly specific, polyclonal rabbit EPOR-AB directed against different epitopes in the cytoplasmic tail of human and murine EPOR and its characterization by mass spectrometric analysis of immunoprecipitated endogenous EPOR, Western blotting, immunostaining and flow cytometry. Among others, we applied genetic strategies including overexpression, Lentivirus-mediated conditional knockout of EpoR and tagged proteins, both on cultured cells and tissue sections, as well as intracortical implantation of EPOR-transduced cells to verify specificity. We show examples of EPOR expression in neurons, oligodendroglia, astrocytes and microglia. Employing this new EPOR-AB with double-labeling strategies, we demonstrate membrane expression of EPOR as well as its localization in intracellular compartments such as the Golgi apparatus. Moreover, we show injury-induced expression of EPOR. In mice, a stereotactically applied stab wound to the motor cortex leads to distinct EpoR expression by reactive GFAP-expressing cells in the lesion vicinity. In a patient suffering from epilepsy, neurons and oligodendrocytes of the hippocampus strongly express EPOR. To conclude, this new analytical tool will allow neuroscientists to pinpoint EPOR expression in cells of the nervous system and to better understand its role in healthy conditions, including brain development, as well as under pathological circumstances, such as upregulation upon distress and injury.

View PDF

 
Posted by Sheila Platt on Feb 16, 2016 3:19 PM CST
Kan Chen, Wanlu Cao, Juan Li, Dave Sprengers, Pratika Y Hernanda, Xiangdong Kong, Luc JW van der Laan, Kwan Man, Jaap Kwekkeboom, Herold J Metselaar, Maikel P Peppelenbosch, and Qiuwei Pan

As uncontrolled cell proliferation requires nucleotide biosynthesis, inhibiting enzymes that mediate nucleotide biosynthesis constitutes a rational approach to the management of oncological diseases. In practice, however, results of this strategy are mixed and thus elucidation of the mechanisms by which cancer cells evade the effect of nucleotide biosynthesis restriction is urgently needed. Here we explored the notion that intrinsic differences in cancer cell cycle velocity are important in the resistance toward inhibition of inosine monophosphate dehydrogenase (IMPDH) by mycophenolic acid (MPA). In short-term experiments, MPA treatment of fast-growing cancer cells effectively elicited G0/G1 arrest and provoked apoptosis, thus inhibiting cell proliferation and colony formation. Forced expression of a mutated IMPDH2, lacking a binding site for MPA but retaining enzymatic activity, resulted in complete resistance of cancer cells to MPA. In nude mice subcutaneously engrafted with HeLa cells, MPA moderately delayed tumor formation by inhibiting cell proliferation and inducing apoptosis. Importantly, we developed a lentiviral vector–based Tet-on label-retaining system that enables to identify, isolate and functionally characterize slow-cycling or so-called label-retaining cells (LRCs) in vitro and in vivo. We surprisingly found the presence of LRCs in fast-growing tumors. LRCs were superior in colony formation, tumor initiation and resistance to MPA as compared with fast-cycling cells. Thus, the slow-cycling compartment of cancer seems predominantly responsible for resistance to MPA.

View PDF
Supplemental Data
Posted by Sheila Platt on Feb 11, 2016 2:39 PM CST
Aifen Lin and Wei-Hua Yan

Aberrant induction of human leukocyte antigen-G (HLA-G) expression has been observed in various malignancies and is strongly associated with tumor immune escape, metastasis and poor prognosis. To date, great achievements have been made in understanding the underlying mechanisms of HLA-G involved in tumor progression. HLA-G could lead to tumor evasion by inhibition of immune cell cytolysis, differentiation and proliferation and inhibition of cytokine production, induction of immune cell apoptosis, generation of regulatory cells and expansion of myeloid-derived suppressive cells and by impairment of chemotaxis. Moreover, HLA-G could arm tumor cells with a higher invasive and metastatic potential with the upregulation of tumor-promoting factor expression such as matrix metalloproteinases (MMPs), indicating that ectopic HLA-G expression could render multiple effects during the progression of malignancies. In this review, we summarized the mechanisms of HLA-G involved in promoting tumor cell immune escaping, metastasis and disease progression. Special attention will be paid to its significance as an attractive therapeutic target in cancers.

View PDF
Posted by Sheila Platt on Feb 4, 2016 12:15 PM CST
Michael F Seldin, Omar K Alkhairy, Annette T Lee, Janine A Lamb, Jon Sussman, Ritva Pirskanen-Matell, Fredrik Piehl, Jan J G M Verschuuren, Anna Kostera-Pruszczyk, Piotr Szczudlik, David McKee, Angelina H Maniaol, Hanne F Harbo,Benedicte A Lie, Arthur Melms, Henri-Jean Garchon, Nicholas Willcox, Peter K Gregersen, and Lennart Hammarstrom

To investigate the genetics of late-onset myasthenia gravis (LOMG), we conducted a genome-wide association study imputation of >6 million single nucleotide polymorphisms (SNPs) in 532 LOMG cases (anti–acetylcholine receptor [AChR] antibody positive; onset age ≥50 years) and 2,128 controls matched for sex and population substructure. The data confirm reported TNFRSF11A associations (rs4574025, P = 3.9 × 10–7, odds ratio [OR] 1.42) and identify a novel candidate gene, ZBTB10 , achieving genome-wide significance (rs6998967, P = 8.9 × 10–10, OR 0.53). Several other SNPs showed suggestive significance including rs2476601 ( P = 6.5 × 10–6, OR 1.62) encoding the PTPN22 R620W variant noted in early-onset myasthenia gravis (EOMG) and other autoimmune diseases. In contrast, EOMG-associated SNPs in TNIP1 showed no association in LOMG, nor did other loci suggested for EOMG. Many SNPs within the major histocompatibility complex (MHC) region showed strong associations in LOMG, but with smaller effect sizes than in EOMG (highest OR ~2 versus ~6 in EOMG). Moreover, the strongest associations were in opposite directions from EOMG, including an OR of 0.54 for DQA1*05:01 in LOMG ( P = 5.9 × 10–12) versus 2.82 in EOMG ( P = 3.86 × 10–45). Association and conditioning studies for the MHC region showed three distinct and largely independent association peaks for LOMG corresponding to (a) MHC class II (highest attenuation when conditioning on DQA1 ), (b) HLA-A and (c) MHC class III SNPs. Conditioning studies of human leukocyte antigen (HLA) amino acid residues also suggest potential functional correlates. Together, these findings emphasize the value of subgrouping myasthenia gravis patients for clinical and basic investigations and imply distinct predisposing mechanisms in LOMG.

View PDF
Supplemental Data
Posted by Sheila Platt on Jan 27, 2016 9:40 AM CST
Pauline M Snijder, Madina Baratashvili, Nicola A Grzeschik, Henri G D Leuvenink, Lucas Kuijpers, Sippie Huitema, Onno Schaap, Ben N G Giepmans, Jeroen Kuipers, Jan Lj Miljkovic, Aleksandra Mitrovic, Eelke M Bos,Csaba Szabó, Harm H Kampinga, Pascale F Dijkers, Wilfred F A den Dunnen, Milos R Filipovic, Harry van Goor, and Ody C M Sibon

Spinocerebellar ataxia type 3 (SCA3) is a polyglutamine (polyQ) disorder caused by a CAG repeat expansion in the ataxin-3 (ATXN3) gene resulting in toxic protein aggregation. Inflammation and oxidative stress are considered secondary factors contributing to the progression of this neurodegenerative disease. There is no cure that halts or reverses the progressive neurodegeneration of SCA3. Here we show that overexpression of cystathionine γ-lyase, a central enzyme in cysteine metabolism, is protective in a Drosophila model for SCA3. SCA3 flies show eye degeneration, increased oxidative stress, insoluble protein aggregates, reduced levels of protein persulfidation and increased activation of the innate immune response. Overexpression of Drosophila cystathionine γ-lyase restores protein persulfidation, decreases oxidative stress, dampens the immune response and improves SCA3- associated tissue degeneration. Levels of insoluble protein aggregates are not altered; therefore, the data implicate a modifying role of cystathionine γ-lyase in ameliorating the downstream consequence of protein aggregation leading to protection against SCA3-induced tissue degeneration. The cystathionine γ-lyase expression is decreased in affected brain tissue of SCA3 patients, suggesting that enhancers of cystathionine γ-lyase expression or activity are attractive candidates for future therapies.

View PDF
Supplemental Data
Posted by Sheila Platt on Jan 21, 2016 3:23 PM CST
John P Pribis, Yousef Al-Abed, Huan Yang, Domokos Gero, Hongbo Xu, Marcelo F Montenegro, Eileen M Bauer, Sodam Kim, Sangeeta S Chavan, Changchun Cai, Tunliang Li, Petra Szoleczky, Csaba Szabo, Kevin J Tracey, and Timothy R Billiar

Extracellular high-mobility group box 1 (HMGB1) (disulfide form), via activation of toll-like receptor 4 (TLR4)-dependent signaling, is a strong driver of pathologic inflammation in both acute and chronic conditions. Identification of selective inhibitors of HMGB1-TLR4 signaling could offer novel therapies that selectively target proximal endogenous activators of inflammation. A cell-based screening strategy led us to identify first generation HIV-protease inhibitors (PI) as potential inhibitors of HMGB1-TLR4 driven cytokine production. Here we report that the first-generation HIV-PI saquinavir (SQV), as well as a newly identified mammalian protease inhibitor STO33438 (334), potently block disulfide HMGB1-induced TLR4 activation, as assayed by the production of TNF-α by human monocyte-derived macro - phages (THP-1). We further report on the identification of mammalian cathepsin V, a protease, as a novel target of these inhibitors. Cellular as well as recombinant protein studies show that the mechanism of action involves a direct interaction between cathepsin V with TLR4 and its adaptor protein MyD88. Treatment with SQV, 334 or the known cathepsin inhibitor SID26681509 (SID) significantly improved survival in murine models of sepsis and reduced liver damage following warm liver ischemia/reperfusion (I/R) models, both characterized by strong HMGB1-TLR4 driven pathology. The current study demonstrates a novel role for cathepsin V in TLR4 signaling and implicates cathepsin V as a novel target for first-generation HIV-PI compounds. The identification of cathepsin V as a target to block HMGB1-TLR4- driven inflammation could allow for a rapid transition of the discovery from the bench to the bedside. Disulfide HMGB1 drives pathologic inflammation in many models by activating signaling through TLR4. Cell-based screening identified the mammalian protease cathepsin V as a novel therapeutic target to inhibit TLR4-mediated inflammation induced by extracellular HMGB1 (disulfide form). We identified two protease inhibitors (PIs) that block cathepsin V and thereby inhibit disulfide HMGB1-induced TLR4 activation: saquinavir (SQV), a firstgeneration PI targeting viral HIV protease and STO33438 (334), targeting mammalian proteases. We discovered that cathepsin V binds TLR4 under basal and HMGB1-stimulated conditions, but dissociates in the presence of SQV over time. Thus cathepsin V is a novel target for first-generation HIV PIs and represents a potential therapeutic target of pathologic inflammation.

View PDF
Supplemental Data
Posted by Sheila Platt on Jan 21, 2016 3:05 PM CST
Francine Z Marques, Simon PR Romaine, Matthew Denniff, James Eales, John Dormer, Ingrid M Garrelds, Lukasz Wojnar, Katarzyna Musialik, Barbara Duda-Raszewska, Bartlomiej Kiszka, Magdalena Duda, Brian J Morris, Nilesh J Samani, AH Jan Danser, Pawel Bogdanski, Ewa Zukowska-Szczechowska, Fadi J Charchar, and Maciej Tomaszewski

MicroRNA-181a binds to the 3’ untranslated region of messenger RNA (mRNA) for renin, a rate-limiting enzyme of the renin-angiotensin system. Our objective was to determine whether this molecular interaction translates into a clinically meaningful effect on blood pressure and whether circulating miR-181a is a measurable proxy of blood pressure. In 200 human kidneys from the TRANScriptome of renaL humAn TissuE (TRANSLATE) study, renal miR-181a was the sole negative predictor of renin mRNA and a strong correlate of circulating miR-181a. Elevated miR-181a levels correlated positively with systolic and diastolic blood pressure in TRANSLATE, and this association was independent of circulating renin. The association between serum miR-181a and systolic blood pressure was replicated in 199 subjects from the Genetic Regulation of Arterial Pressure of Humans In the Community (GRAPHIC) study. Renal immunohistochemistry and in situ hybridization showed that colocalization of miR-181a and renin was most prominent in collecting ducts where renin is not released into the systemic circulation. Analysis of 69 human kidneys characterized by RNA sequencing revealed that miR-181a was associated with downregulation of four mitochondrial pathways and upregulation of 41 signaling cascades of adaptive immunity and inflammation. We conclude that renal miR-181a has pleiotropic effects on pathways relevant to blood pressure regulation and that circulating levels of miR-181a are both a measurable proxy of renal miR-181a expression and a novel biochemical correlate of blood pressure.

View PDF
Supplemental Data
Posted by Leah Caracappa on Jan 14, 2016 10:12 AM CST
Lisa Mullen, Jason Ferdjani, and Sandra Sacre

Simvastatin has been shown to have antiinflammatory effects that are independent of its serum cholesterol lowering action, but the mechanisms by which these antiinflammatory effects are mediated have not been elucidated. To explore the mechanism involved, the effect of simvastatin on toll-like receptor (TLR) signaling in primary human monocytes was investigated. A short pretreatment with simvastatin dose-dependently inhibited the production of tumor necrosis factor (TNF)-α in response to TLR8 activation (but not TLR2, -4 or -5). Statins are known inhibitors of the cholesterol biosynthetic pathway, but, intriguingly, TLR8 inhibition could not be reversed by addition of mevalonate or geranylgeranyl pyrophosphate, downstream products of cholesterol biosynthesis. TLR8 signaling was examined in HEK 293 cells stably expressing TLR8, where simvastatin inhibited I kappa B kinase (IKK)α/β phosphorylation and subsequent nuclear factor (NF)-κB activation without affecting the pathway to activating protein-1 (AP-1). Because simvastatin has been reported to have antiinflammatory effects in RA patients and TLR8 signaling contributes to TNF production in human RA synovial tissue in culture, simvastatin was tested in these cultures. Simvastatin significantly inhibited the spontaneous release of TNF in this model, which was not reversed by mevalonate. Together, these results demonstrate a hitherto unrecognized mechanism of simvastatin inhibition of TLR8 signaling that may in part explain its beneficial antiinflammatory effects.

View PDF
Posted by Leah Caracappa on Jan 12, 2016 1:10 PM CST
Ramune Sepetiene, Vaiva Patamsyte, Giedrius Zukovas, Giedre Jariene, Zita Stanioniene, Rimantas Benetis, Abdonas Tamosiunas, and Vaiva Lesauskaite

Transforming growth factor (TGF)-β1 is a cytokine that participates in a broad range of cellular regulatory processes and is associated with various diseases including aortic aneurysm. Increased TGF-β1 levels are linked to Marfan syndrome (MFS) caused by fibrillin1 (FBN1) mutations and subsequent defects in signaling system. FBN1 single nucleotide polymorphisms (SNPs) rs2118181 and rs1059177 do not cause MFS but are associated with dilative pathology of aortic aneurysms (DPAAs). TGF-β1 and FBN1 SNPs rs2118181 and rs1059177 are potential biomarkers for early diagnosis of DPAA. We investigated the relationship between TGF-β1 levels in human blood plasma and FBN1 rs2118181 and rs1059177 in 269 individuals. The results showed a quantitative dependence of SNP genotype and TGF-β1 concentration. Presence of a single rs2118181 minor allele (G) increased the amount of TGF-β1 by roughly 1 ng/mL. Two copies of FBN1 rs1059177 minor allele (G) were required to have an additive effect on TGF-β1 levels. We found higher TGF-β1 concentrations in men compared with women (p = 0.001). A strong correlation between TGF-β1 levels and FBN1 SNPs suggests that a single nucleotide substitution in FBN1 sequence might reduce bioavailability or binding properties of fibrillin-1 and have an effect on TGF-β1 activation and cytokine concentration in blood plasma. By establishing the relationship between TGF-β1 and FBN1 SNPs rs2118181 and rs1059177, we provide evidence that their combination might be used as molecular biomarkers to identify patients at risk for sporadic ascending aortic aneurysm and aortic dissection.

View PDF
Posted by Leah Caracappa on Jan 12, 2016 1:07 PM CST
   1 2 3 4 5 6 7 8 9 ... 11